young adult

Physical fitness improves brains in younger adults too

  • Large brain scan study found physical fitness was associated with better brain structure and better cognitive performance in younger adults.
  • A small study found greater aerobic fitness was linked to a larger entorhinal cortex (a brain region affected early in Alzheimer's disease).
  • A small study found endurance runners’ brains have greater functional connectivity than the brains of more sedentary age-matched individuals.

Data from a publicly available database of 1206 MRI brain scans from the Human Connectome Project has revealed that physical fitness is associated with better brain structure and brain functioning in young adults.

The volunteers (average age 29) had their physical fitness assessed using a "two-minute walking test", where each person is asked to walk as fast as possible for 2 minutes and the distance is then measured. Cognition was assessed using a series of cognitive tests to create a global cognition score.

Better performance on the 2-minute walking test was associated with better cognitive performance, and with structural integrity of the white matter in the brain. The association with better cognition was found in nearly all cognitive domains, but had particular benefits for fluid intelligence, cognitive flexibility, and processing speed.

Age, gender, BMI, and blood sugar levels, didn’t significantly affect these associations, but education did substantially weaken the association.

Aerobic fitness linked to bigger entorhinal cortex & better memory in young adults

A study involving 33 young adults (aged 18-35) found that those with greater aerobic fitness had a larger entorhinal cortex, and performed better on a recognition memory task.

The entorhinal cortex, which is part of the medio-temporal lobe (MTL) is affected early in Alzheimer’s disease.

Participants’ fitness was assessed using a treadmill test to measure aerobic capacity.

Runners’ brains may be more connected

Comparison of brain scans from 11 male collegiate distance runners and 11 age-matched controls has found that endurance runners’ brains have greater functional connectivity than the brains of more sedentary individuals (those who hadn’t engaged in any kind of organized athletic activity for at least a year).

Reference: 

Opel, N., Martin, S., Meinert, S. et al. White matter microstructure mediates the association between physical fitness and cognition in healthy, young adults. Sci Rep 9, 12885 (2019). https://doi.org/10.1038/s41598-019-49301-y

Whiteman, A. S., Young, D. E., Budson, A. E., Stern, C. E., & Schon, K. (2016). Entorhinal volume, aerobic fitness, and recognition memory in healthy young adults: A voxel-based morphometry study. NeuroImage, 126, 229–238. https://doi.org/10.1016/j.neuroimage.2015.11.049

Raichlen, D. A., Bharadwaj, P. K., Fitzhugh, M. C., Haws, K. A., Torre, G.-A., Trouard, T. P., & Alexander, G. E. (2016). Differences in Resting State Functional Connectivity between Young Adult Endurance Athletes and Healthy Controls. Frontiers in Human Neuroscience, 10. https://doi.org/10.3389/fnhum.2016.00610

Source: 

Topics: 

tags development: 

tags lifestyle: 

Getting fit, getting enough iron boosts women students' grades

A study of 105 female college students found that those with the highest levels of stored iron had the highest grades. Fitness was also a factor, but while the effect of fitness was greater overall than the impact of iron status, both factors together had an even greater effect. The difference between fit women with normal iron levels and unfit women who were iron deficient was sufficiently large to to drop or increase a letter grade.

The association between the measure of fitness (peak oxygen intake) and grade was mediated by working memory.

Reference: 

Scott, S. P., Souza, M. J. D., Koehler, K., & Murray-Kolb, L. E. (2017). Combined Iron Deficiency and Low Aerobic Fitness Doubly Burden Academic Performance among Women Attending University. The Journal of Nutrition, 147(1), 104–109. https://doi.org/10.3945/jn.116.240192

Source: 

Topics: 

tags development: 

tags lifestyle: 

Brain tissue structure could explain link between fitness and memory

  • Brain scans of healthy young adults found that higher aerobic fitness was associated with greater hippocampal elasticity, which was a better predictor of cognitive performance than hippocampal volume.

A new MRI technique has revealed that it is the structural integrity of the hippocampus more than its size that reflects fitness and correlates with cognitive performance.

Research has focused on hippocampal size because it is easier to measure, and in children and older adults there are strong correlations between hippocampal size and memory. But this is less true for healthy, young adults. This new, subtler, technique reveals that something else is going on — something that has probably been masked by the effects of size in older adults (whose hippocampi are shrinking) and younger children (whose brains are still growing).

The technique measures viscoelasticity. If the hippocampus is more elastic, memory is better. When it’s more viscous, memory is worse. Those with better aerobic fitness had better hippocampal elasticity.

https://www.eurekalert.org/pub_releases/2017-05/uoia-bts050117.php

Reference: 

Source: 

Topics: 

tags development: 

tags lifestyle: 

Alzheimer's amyloid clumps found in young adult brains

An examination of the brains of three groups of deceased individuals (13 cognitively normal, aged 20-66; 16 non-demented older adults, aged 70-99; 21 individuals with Alzheimer's, aged 60-95) has found that amyloid starts to accumulate and clump inside basal forebrain cholinergic neurons in young adulthood. Other neurons didn't show the same extent of amyloid accumulation. Basal forebrain cholinergic neurons are the first to be affected, and to die, in aging and Alzheimer's.

http://www.eurekalert.org/pub_releases/2015-03/nu-aac022515.php

Reference: 

Source: 

Topics: 

tags development: 

tags problems: 

Tai Chi improves blood flow in young adults

A year-long study involving young adults has compared those who engaged in either tai chi or brisk walking or no exercise. Those who practiced tai chi had a significantly higher number of CD 34+ cells compared with those in the other groups. CD 34+ cells are markers for blood stem cells involved in cell self-renewal, differentiation and proliferation. The findings suggest tai chi may prompt vasodilation and increase blood flow.

http://www.eurekalert.org/pub_releases/2014-05/ctco-ctc052814.php

Mynd: 

tags: 

tags development: 

tags lifestyle: 

Frequent multitaskers are the worst at it

March, 2013

A survey of college students found that those who scored highest in multitasking ability were also least likely to multitask, while those who scored lowest were most likely to engage in it.

I’ve reported often on the perils of multitasking. Here is yet another one, with an intriguing new finding: it seems that the people who multitask the most are those least capable of doing so!

The study surveyed 310 undergraduate psychology students to find their actual multitasking ability, perceived multitasking ability, cell phone use while driving, use of a wide array of electronic media, and personality traits such as impulsivity and sensation-seeking.

Those who scored in the top quarter on a test of multitasking ability tended not to multitask. Some 70% of participants thought they were above average at multitasking, and perceived multitasking ability (rather than actual) was associated with multitasking. Those with high levels of impulsivity and sensation-seeking were also more likely to multitask (with the exception of using a cellphone while driving, which wasn’t related to impulsivity, though it was related to sensation seeking).

The findings suggest that those who multitask don’t do so because they are good at multitasking, but because they are poor at focusing on one task.

Reference: 

Source: 

Topics: 

tags: 

tags development: 

tags memworks: 

tags problems: 

The role of motivation on academic performance

January, 2013

A study shows how easily you can affect motivation, producing a significant effect on college test scores, while a large German study finds that motivational and strategy factors, but not intelligence, affects growth in math achievement at high school.

I’ve spoken before about the effects of motivation on test performance. This is displayed in a fascinating study by researchers at the Educational Testing Service, who gave one of their widely-used tests (the ETS Proficiency Profile, short form, plus essay) to 757 students from three institutions: a research university, a master's institution and a community college. Here’s the good bit: students were randomly assigned to groups, each given a different consent form. In the control condition, students were told: “Your answers on the tests and the survey will be used only for research purposes and will not be disclosed to anyone except the research team.” In the “Institutional” condition, the rider was added: “However, your test scores will be averaged with all other students taking the test at your college.” While in the “Personal” condition, they were told instead: “However, your test scores may be released to faculty in your college or to potential employers to evaluate your academic ability.”

No prizes for guessing which of these was more motivating!

Students in the “personal” group performed significantly and consistently better than those in the control group at all three institutions. On the multi-choice part of the test, the personal group performed on average .41 of the standard deviation higher than the control group, and the institutional group performed on average .26 SD higher than the controls. The largest difference was .68 SD. On the essay, the largest effect size was .59 SD. (The reason for the results being reported this way is because the focus of the study was on the use of such tests to assess and compare learning gains by colleges.)

The effect is perhaps less dramatic at the individual level, with the average sophomore score on the multichoice test being 460, compared to 458 and 455, for personal, institutional, and control groups, respectively. Interestingly, this effect was greater at the senior level: 469 vs 466 vs 460. For the essay question, however, the effect was larger: 4.55 vs 4.35 vs 4.21 (sophomore); 4.75 vs 4.37 vs 4.37 (senior). (Note that these scores have been adjusted by college admission scores).

Students also reported on motivation level, and this was found to be a significant predictor of test performance, after controlling for SAT or placement scores.

Student participants had received at least one year of college, or (for community colleges) taken at least three courses.

The findings confirm recently expressed concern that students don’t put their best efforts into low-stakes tests, and that, when such tests are used to make judgments about institutional performance (how much value they add), they may well be significantly misleading, if different institutions are providing different levels of motivation.

On a personal level, of course, the findings may be taken as further confirmation of the importance of non-academic factors in academic achievement. Something looked at more directly in the next study.

Motivation, study habits—not IQ—determine growth in math achievement

Data from a large German longitudinal study assessing math ability in adolescents found that, although intelligence was strongly linked to students' math achievement, this was only in the initial development of competence. The significant predictors of growth in math achievement, however, were motivation and study skills.

Specifically (and excitingly for me, since it supports some of my recurring themes!), at the end of Grade 5, perceived control was a significant positive predictor for growth, and surface learning strategies were a significant negative predictor. ‘Perceived control’ reflects the student’s belief that their grades are under their control, that their efforts matter. ‘Surface learning strategies’ reflect the use of rote memorization/rehearsal strategies rather than ones that encourage understanding. (This is not to say, of course, that these strategies don’t have their place — but they need to be used appropriately).

At the end of Grade 7, however, a slightly different pattern emerged, with intrinsic motivation and deep learning strategies the significant positive predictors of growth, while perceived control and surface learning strategies were no longer significant.

In other words, while intelligence didn’t predict growth at either point, the particular motivational and strategy variables that affected growth were different at different points in time, reflecting, presumably, developmental changes and/or changes in academic demands.

Note that this is not to say that intelligence doesn’t affect math achievement! It is, indeed, a strong predictor — but through its effect on getting the student off to a good start (lifting the starting point) rather than having an ongoing benefit.

There was, sadly but unfortunately consistent with other research, an overall decline in motivation from grade 5 to 7. There was also a smaller decline in strategy use (any strategy! — presumably reflecting the declining motivation).

It’s also worth noting that (also sadly but unsurprisingly) the difference between school types increased over time, with those in the higher track schools making more progress than those in the lowest track.

The last point I want to emphasize is that extrinsic motivation only affected initial levels, not growth. The idea that extrinsic motivation (e.g., wanting good grades) is of only short-term benefit, while intrinsic motivation (e.g., being interested in the subject) is far more durable, is one I have made before, and one that all parents and teachers should pay attention to.

The study involved 3,520 students, following them from grades 5 to 10. The math achievement test was given at the end of each grade, while intelligence and self-reported motivation and strategy use were assessed at the end of grades 5 and 7. Intelligence was assessed using the nonverbal reasoning subtest of Thorndike’s Cognitive Abilities Test (German version). The 42 schools in the study were spread among the three school types: lower-track (Hauptschule), intermediate-track (Realschule), and higher-track (Gymnasium). These school types differ in entrance standards and academic demands.

Reference: 

Source: 

Topics: 

tags: 

tags development: 

tags memworks: 

tags strategies: 

tags study: 

Rapamycin makes young mice learn better and prevents decline in old mice

July, 2012

Further evidence from mice studies that the Easter Island drug improves cognition, in young mice as well as old.

I have reported previously on research suggesting that rapamycin, a bacterial product first isolated from soil on Easter Island and used to help transplant patients prevent organ rejection, might improve learning and memory. Following on from this research, a new mouse study has extended these findings by adding rapamycin to the diet of healthy mice throughout their life span. Excitingly, it found that cognition was improved in young mice, and abolished normal cognitive decline in older mice.

Anxiety and depressive-like behavior was also reduced, and the mice’s behavior demonstrated that rapamycin was acting like an antidepressant. This effect was found across all ages.

Three "feel-good" neurotransmitters — serotonin, dopamine and norepinephrine — all showed significantly higher levels in the midbrain (but not in the hippocampus). As these neurotransmitters are involved in learning and memory as well as mood, it is suggested that this might be a factor in the improved cognition.

Other recent studies have suggested that rapamycin inhibits a pathway in the brain that interferes with memory formation and facilitates aging.

Reference: 

Source: 

Topics: 

tags: 

tags development: 

tags memworks: 

tags problems: 

Pages

Subscribe to RSS - young adult